Abstract

A series of boron nitride-pyromellitic dianhydride composites have been successfully synthesized by calcinating the mixtures of boron nitride (BN) and pyromellitic dianhydride (PA) at 350 °C, in which the composite (BNPA2) has the largest adsorption quantity (65.1 mg/g) for rhodamine B (RhB) and the best photo-removal efficiency for RhB under visible light irradiation. 1H NMR characterizations for BN, PA and BNPA2 suggest that this composite is formed via the reaction between the OH groups in BN and PA. BNPA2 can also adsorb neutral red (NR), methyl orange (MO), tetracycline (TC) and atrazine (AT). NR and MO can be photo-removed by BNPA2 under visible light irradiation. Colorless TC and AT can also be degraded by BNPA2 under visible light irradiation, suggesting that BNPA2 is visible light responsible photocatalyst. BNPA2 has the highest photo-removal efficiency for the cationic RhB and NR, followed by the anionic MO. This is from that BNPA2 has negative surface. When anionic MO mixes with cationic RhB (or NR) together, BNPA2 prefers to remove cationic RhB (or NR) from the mixture solution under visible light irradiation and the removal efficiency of anionic MO by BNPA2 is also increased. Thus, electrostatic interactions between dyes and BNPA2 as well as between dyes play significant role in the removal process. •O2− makes a main contribution for this photo-removal of these aromatic pollutants (dyes, TC and AT) by BNPA2 under visible light irradiation. Furthermore, the removal performance of BNPA2 for RhB, TC and AT can be effectively regenerated by visible light irradiation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call