Abstract

Growing concerns over effects of climate warming and other stressors on shallow Arctic lakes and ponds stimulate the need to develop and implement effective protocols to track changes in ecological integrity. This study assesses seasonal and spatial variability of periphytic diatom communities in a shallow Arctic lake in northern Yukon Territory to establish biomonitoring protocols. Artificial substrate samplers, which mimic macrophytes, allow direct measurement of biotic responses to shifting environmental conditions and control for possible confounding factors (e.g., accrual time and microhabitat type). Artificial substrate samplers were deployed at three locations and retrieved at three times (early, mid, and late) during the ice-free season. Analyses identified that diatom abundance increased exponentially and community composition changed significantly over the ice-free season, despite little variability in water chemistry, but did not differ among the three sampling locations within the lake. Patterns of seasonal succession in diatom community composition were characterized by first arrival of well-dispersed taxa, which included several planktonic taxa, followed by a transitional phase composed of planktonic and periphytic taxa, and culminated with dominance by periphytic species, mainly Achnanthes minutissima (Kutzing). Results highlight the role of seasonal succession on artificial substrate colonization and the need to deploy artificial substrate samplers for the duration of the ice-free season to capture peak periphytic algal abundance. Low spatial variability of shallow Arctic lakes allows for samplers to be deployed at one single location to characterize diatom community composition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call