Abstract
This research proposes the use of artificial neural network to predict the allowable bearing capacity and elastic settlement of shallow foundation on granular soils in Sharjah, United Arab Emirates. Data obtained from existing soil reports of 600 boreholes were used to train and validate the model. Three parameters (footing width, effective unit weight, and SPT blow count) are considered to have the most significant impact on the magnitude of allowable bearing capacity and elastic settlement of shallow foundations, and thus were used as the model inputs. Throughout the study, depth of footing was limited to 1.5 m below existing ground level and water table depth taken at the level of the footing. Performance comparison of the developed models (in terms of coefficient of determination, root mean square error, and mean absolute error) revealed that the developed artificial neural network models could be effectively used for predicting the allowable bearing capacity and elastic settlement. As such, the developed models can be used at the preliminary stage of estimating the allowable bearing capacity and settlements of shallow foundations on granular soils, instead of the conventional methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.