Abstract

High-performance concrete performs better than normal concrete because of using additional components than usual concrete components. Several artificially based analytics were used to evaluate the compressive strength (CS) of high-performance concrete (HPC) made with fly ash and blast furnace slag. In the present research, the Aquila optimizer (AO) was used to find the best values for the determinants of the adaptive neuro-fuzzy inference system (ANFIS), and radial basis function neural network (RBFNN) that may be changed to enhance performance. The suggested approaches were established using 1030 tests, eight inputs (a primary component of mix designs, admixtures, aggregates, and curing age), and the CS as the forecasting objective. The results of the outperformed model were then contrasted with those found in the existing scientific literature. Calculation results point to the potential benefit of combining AO-RBFNN and AO-ANFIS study. The AO-ANFIS demonstrated significantly higher R2 (Train: 0.9862, Test: 0.9922) and lower error metrics (such as: RMSE at 2.1434 (train) and 1.2763 (Test)) when compared to the AO-RBFNN and previously published articles. In summation, the proposed method for determining the CS of HPC supplemented with blast furnace slag and fly ash may be established using the suggested AO-ANFIS analysis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call