Abstract

BackgroundThe majority of patients with acute myelogenous leukemia (AML) still die of their disease. In order to improve survival rates in AML patients, new strategies are necessary to discover biomarkers for the detection and targeted therapy of AML. One of the advantages of the aptamer-based technology is the unique cell-based selection process, which allows us to efficiently select for cell-specific aptamers without knowing which target molecules are present on the cell surface.MethodsThe NB4 AML cell line was used as the target cell population for selecting single stranded DNA aptamers. After determining the affinity of selected aptamers to leukocytes, the aptamers were used to phenotype human bone marrow leukocytes and AML cells in clinical specimens. Then a biotin-labelled aptamer was used to enrich and identify its target surface protein.ResultsThree new aptamers were characterized from the selected aptamer pools (JH6, JH19, and K19). All of them can selectively recognize myeloid cells with Kd in the low nanomole range (2.77 to 12.37 nM). The target of the biotin-labelled K19 aptamer probe was identified as Siglec-5, a surface membrane protein in low abundance whose expression can serve as a biomarker of granulocytic maturation and be used to phenotype AML. More importantly, Siglec-5 expression can be used to detect low concentrations of AML cells in human bone marrow specimens, and functions as a potential target for leukemic therapy.ConclusionsWe have demonstrated a pipeline approach for developing single stranded DNA aptamer probes, phenotyping AML cells in clinical specimens, and then identifying the aptamer-recognized target protein. The developed aptamer probes and identified Siglec-5 protein may potentially be used for leukemic cell detection and therapy in our future clinical practice.

Highlights

  • Acute myelogenous leukemia (AML) is a heterogeneous group of malignant hematopoietic neoplasms derived from hematopoietic stem cells postulated to arise due to mutations of genes that regulated the orderly proliferation, differentiation, and maturation of hematopoietic cells

  • Using Cell-SELEX for selection of aptamers bound to NB4 cells Cultured acute myelogenous leukemia (AML) NB4 and HL60 cell lines have been used for aptamer selection, and aptamers selected against HL60 cells can recognize monocytic cells [19]

  • Because of previous unsuccessful attempts to select aptamers against NB4 cells, we focused on the viability of the cultured cells used for aptamer selection

Read more

Summary

Introduction

Acute myelogenous leukemia (AML) is a heterogeneous group of malignant hematopoietic neoplasms derived from hematopoietic stem cells postulated to arise due to mutations of genes that regulated the orderly proliferation, differentiation, and maturation of hematopoietic cells. In the past two decades, scientific advances utilizing molecular techniques and cytogenetic detection have yielded new insights into the genetic and biologic features of acute leukemia. Despite these advances, the majority of patients who suffered from AML still died of their disease [1,2,3]. In older individuals (>55-60 years) and in secondary AML patients, the outlook is more dismal with overall survival rates of. The majority of patients with acute myelogenous leukemia (AML) still die of their disease. In order to improve survival rates in AML patients, new strategies are necessary to discover biomarkers for the detection and targeted therapy of AML. One of the advantages of the aptamer-based technology is the unique cell-based selection process, which allows us to efficiently select for cell-specific aptamers without knowing which target molecules are present on the cell surface

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.