Abstract

The analysis of microplastics (MP) is time-consuming which limits our capacity to monitor and mitigate plastic pollution. Here, near infrared (1000–2500 nm) hyperspectral imaging (NIR-HSI) offers an advantage over other spectroscopic techniques because it can rapidly image large areas relative to other systems. While NIR-HSI can successfully detect MP, accuracy and limitations of the method have not been fully explored. In addition, lack of open databases and analysis pipelines increases the barrier to use.In this work, we developed a spectral database containing preproduction pellets, consumer products and marine plastic debris, imaged using a Hyspex SWIR-320me imager. A SIMCA model identified four polymer types: polypropylene, polyethylene, polyethylene terephthalate and polystyrene (PP, PE, PET, PS) to identify MP in hyperspectral images. We determined the accuracy of size estimates for PS MP > 1000 μm using fluorescence microscopy and tested the impact of photooxidation on detection of plastics by NIR-HSI (PE, PP, PS, PET) and subsequent prediction by the SIMCA model.The model performed well across all polymers as shown by high specificity, sensitivity, and accuracy for internal cross validation (>88%), and sensitivity >80% for external validation. PS MP < 500 μm Feret diameter were not consistently detected by NIR-HSI when compared with fluorescence microscopy. However, estimates for Feret diameter were consistent for PS MP > 1000 μm. Analysis by NIR-HSI showed no spectral changes and SIMCA showed no decreased precision with increased photooxidation across polymer types. Recall varied across polymer type and photooxidation stage with no clear trends.This study shows that NIR-HSI is a rapid method which can accurately identify MP of the four most relevant polymer types, precluding the need to analyze particles one at a time. NIR-HSI can be a key technology for environmental monitoring of plastic debris where rapid analysis of multiple samples is required.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call