Abstract

Crop phenology has been widely detected from multiple historical satellite observations. Conversely, Near-Real-Time (NRT) monitoring of crop progress from timely available remote sensing data is barely investigated because of the lack of high-frequency cloud-free satellite observations and future potential crop development. To address the challenge, this study proposes a novel algorithm for operational NRT monitoring of crop progress at the field scale. This algorithm first fuses the high spatial resolution (30 m) Harmonized Landsat and Sentinel-2 (HLS) data and the high temporal frequent (10 min) Advanced Baseline Imager (ABI) observations to generate cloud-free time series of HLS-ABI EVI2 (two-band Enhanced Vegetation Index) with a Spatiotemporal Shape-Matching Model (SSMM). It then predicts future potential EVI2 values at a given pixel using a reference EVI2 time series obtained from the neighboring pixels in the preceding year. Integrating the currently available HLS-ABI observations and the predicted future EVI2 values to generate annual EVI2 time series, the algorithm finally detects six crop phenometrics including greenup onset, mid-greenup phase, maturity onset, senescence onset, mid-senescence phase, and dormancy onset. The NRT monitoring, which are separated as near-real-time prediction (phenological event detected after the occurrence), real-time prediction (phenological event detected around the occurrence), and short-term prediction (phenological event detected before the occurrence), are continuously updated and improved with new HLS and ABI observations at a weekly basis throughout the growing season. We evaluate the NRT monitoring against standard phenology products, PhenoCam observations, as well as the weekly Crop Progress Reports (CPRs) released from the National Agricultural Statistics Service (NASS) of the United States Department of Agriculture (USDA) in 2020 across Iowa. The evaluation demonstrates the robustness of the developed algorithm in NRT monitoring of crop phenology. Although the uncertainties are relatively large for short-term prediction compared with standard detections, the real-time prediction shows that the Mean Absolute Difference (MAD) is <10 days for greenup and dormancy onset, and ∼ 5 days in the other four phenometrics. Further, the real-time prediction aligns well with PhenoCam observations (R2 = 0.96, P < 0.001) with a MAD of 7.8 days. Moreover, the HLS-ABI real-time prediction of crop phenometrics is capable of tracking NASS crop progress closely with small time shifts (≤ 5 days) and significant correlations (R2 > 0.85, P < 0.001) for various phenological stages of corn and soybean. These results prove that the algorithm could be implemented for NRT monitoring of various crop phenometrics from field, state, to national scales.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.