Abstract

N-acetyl-L-cysteine (NAC) as a class of thiols is commonly used in the treatment of lung diseases, detoxification and prevention of liver damage. In this paper, 4-mercaptobenzoic acid (4-MBA) coated and polyvinylpyrrolidone (PVP) attached copper nanoclusters (4-MBA@PVP-CuNCs) were successfully synthesized using a simple one-pot method with an absolute quantum yield of 10.98 %, and its synthetic conditions (like effects of single/double ligands and temperature) were studied intensively. Then Hg2+ could quench the fluorescence of the 4-MBA@PVP-CuNCs and its fluorescence was restored with the addition of NAC. Based on the above principles, an off–on switching system was established to detect NAC. That is, the 4-MBA@PVP-CuNCs-Hg probe was prepared by adding Hg2+ to switch off the fluorescence of the CuNCs by static quenching, and then NAC was added to switch on the fluorescence of the probe based on the chelation of NAC and Hg2+. Moreover, the effects of metal ion types and mercury ion doses for the probe construction were also further discussed. The method showed excellent linearity in the range of 0.05–1.25 µM and low detection limit of 16 nM. Meanwhile, good recoveries in real urine, tablets and pellets were observed, which proved the reliability of the method and provided a convenient, fast and sensitive method for NAC detection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.