Abstract

An early-warning system is developed for air quality.Pollutant emission characteristics are analyzed using distribution functions.Dynamic forecast intervals are constructed for addressing the uncertainty.Air quality is evaluated by integrating fuzzy set theory and AHP.The results show that the developed early-system is effective and reliable. Air quality has received continuous attention from both environmental managers and citizens. Accordingly, early-warning systems for air pollution are very useful tools to avoid negative health effects and develop effective prevention programs. However, developing robust early-warning systems is very challenging, as well as necessary. This paper develops a reliable and effective early-warning system that consists of air quality prediction and assessment modules. In the prediction module, a hybrid forecasting method is developed for predicting pollutant concentrations that effectively estimates future air quality conditions. In developing this proposed model, we suggest the use of a back propagation neural network algorithm, combined with a probabilistic parameter model and data preprocessing techniques, to address the uncertainties involved in future air quality prediction. Meanwhile, a pre-analysis is implemented, primarily by using optimized distribution functions to examine and analyze statistical characteristics and emission behaviors of air pollutants. The second method, which is developed as part of the second module, is based on fuzzy set theory and the Analytic Hierarchy Process, and it performs air quality assessments to provide a clear and intelligible description of air quality conditions. Using data from the Ministry of Environmental Protection of China and six stages of air quality classification levels, specifically good, moderate, lightly polluted, moderately polluted, heavily polluted and severely polluted, two cities in China, Chengdu and Hangzhou, are used as illustrative examples to verify the effectiveness of the developed early-warning system. The results demonstrate that the proposed methods are effective and reliable for use by environmental supervisors in air pollution monitoring and management.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.