Abstract

Recent developments in materials engineering create a possibility of new building envelope systems to increase various aspects of building performance. One of the recent developments is a dynamically responsive material that changes its phase based on ambient environmental conditions. This is a major development in materials engineering, and exemplifies a material that responds to ambient temperature and changes its shape. This is a good candidate as a shading device that changes its location to block or allow sunlight during the daytime, to increase visible and thermal comfort of indoor spaces.Current building simulation tools are limited in testing new materials. The major hurdle is that existing building simulation tools are developed for conventional materials and have difficulties in modeling new dynamically responsive materials. This paper presents a method to capture the complexity of physical behaviors in new material through building energy simulations. A more efficient simulation tool to test new materials will allow for more reliable results and the advancement in innovative building materials.This paper develops a method to evaluate a new daylight control system that includes an analysis of a new dynamically tunable material. To assess the daylight control system composed with the new material, the paper integrates a daylight model, a whole-building energy model, and a Kriging model to evaluate the new system’s performance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call