Abstract
A growing literature is utilizing machine learning methods to develop psychopathology risk algorithms that can be used to inform preventive intervention. However, efforts to develop algorithms for internalizing disorder onset have been limited. The goal of this study was to utilize prospective survey data and ensemble machine learning to develop algorithms predicting adult onset internalizing disorders. The data were from Waves 1–2 of the National Epidemiological Survey on Alcohol and Related Conditions (n = 34,653). Outcomes were incident occurrence of DSM-IV generalized anxiety, panic, social phobia, depression, and mania between Waves 1–2. In total, 213 risk factors (features) were operationalized based on their presence/occurrence at the time of or before Wave 1. For each of the five internalizing disorder outcomes, super learning was used to generate a composite algorithm from several linear and non-linear classifiers (e.g., random forests, k-nearest neighbors). AUCs achieved by the cross-validated super learner ensembles were in the range of 0.76 (depression) to 0.83 (mania), and were higher than AUCs achieved by the individual algorithms. Individuals in the top 10% of super learner predicted risk accounted for 37.97% (depression) to 53.39% (social anxiety) of all incident cases. Thus, the algorithms achieved acceptable-to-excellent prediction accuracy with a high concentration of incident cases observed among individuals predicted to be highest risk. In parallel with the development of effective preventive interventions, further validation, expansion, and dissemination of algorithms predicting internalizing disorder onset/trajectory could be of great value.
Accepted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.