Abstract

This approach is carry out for developing the Adaptive Neuro-Fuzzy Inference System (ANFIS) for controlling the forthcoming Intelligent Universal Transformer (IUT) in regard of voltages and current control in both input and output stages which is optimized by particle swarm optimization. Current or voltages errors and their time derivative have been considered as the inputs of Nero Fuzzy controller for elaborating the firing angles of converters in IUT basic construction. ANFIS constructed from a fuzzy inference system (FIS) in which the membership function parameters are tuned according to the back propagation algorithm or in conjunction to the least squares method. A neural network maps inputs through input membership functions and associated parameters, and output membership functions and associated parameters to outputs which interprets the input-output map. The associated parameters of membership functions change through the learning algorithm by a gradient vector modeling the input output data in case of given parameters. Optimization method will be investigated to adjust the parameters according to error reduction computed by sum of the squared variation from actual outputs to the desired ones. Advanced Distribution Automation (ADA) is the state of art introducing for tomorrows distribution automation with the new invention in management and control. ADA is equipping by the Intelligent Equipment Devices (IED) in which IUT is a key point introducing as an intelligent transformer subjecting for tomorrows distribution automation in the near future. The proposed ANFIS is a control scheme develop for controlling the IUT by bringing the major advantages like harmonic Filtering, voltage regulation, automatic sag correction, energy storage, 48V DC option, three phase outputs in term of one phase input, reliable divers power as 240V 400HZ for communication utilization and two other 240V 60 HZ outputs, dynamic system monitoring and robustness in major disturbances occurred in terms of input and load variation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.