Abstract

Most haptic interfaces developed for aircraft control provide haptic support as an additional force on the control manipulator. This study revisits the active manipulator, which is a design concept that is different from but complementary to existing haptic interfaces. This control device sends the force that the pilot exerts on it to the aircraft while feeding back the aircraft rotational rate by means of its deflection angle. It is found that, in comparison with the conventional passive manipulator, the active manipulator greatly facilitates target following and disturbance rejection in compensatory tracking tasks. Furthermore, larger improvements in task performance are associated with higher forcing-function bandwidths. These findings are accounted for by the fact that the active manipulator changes the effective controlled-element dynamics into integratorlike dynamics while at the same time integrating disturbance rejection into the neuromuscular system. However, the high-frequency disturbances acting on the aircraft present in feedback about the aircraft state adversely affect the operational effectiveness of the active manipulator. Based on the experimental findings and results from the passivity theory, a lead–lag filter is designed and evaluated, which mitigates this effect without affecting task performance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.