Abstract

Cervical cancer is one of the most common types of cancer among women, which has higher death-rate than many other cancer types. The most common way to diagnose cervical cancer is to analyze images of cervical cells, which is performed using Pap smear imaging test. Early and accurate diagnosis can save the lives of many patients and increase the chance of success of treatment methods. Until now, various methods have been proposed to diagnose cervical cancer based on the analysis of Pap smear images. Most of the existing methods can be divided into two groups of methods based on deep learning techniques or machine learning algorithms. In this study, a combination method is presented, whose overall structure is based on a machine learning strategy, where the feature extraction stage is completely separate from the classification stage. However, in the feature extraction stage, deep networks are used. In this paper, a multi-layer perceptron (MLP) neural network fed with deep features is presented. The number of hidden layer neurons is tuned based on four innovative ideas. Additionally, ResNet-34, ResNet-50 and VGG-19 deep networks have been used to feed MLP. In the presented method, the layers related to the classification phase are removed in these two CNN networks, and the outputs feed the MLP after passing through a flatten layer. In order to improve performance, both CNNs are trained on related images using the Adam optimizer. The proposed method has been evaluated on the Herlev benchmark database and has provided 99.23 percent accuracy for the two-classes case and 97.65 percent accuracy for the 7-classes case. The results have shown that the presented method has provided higher accuracy than the baseline networks and many existing methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.