Abstract

Synthetic non-absorbable meshes are widely used to augment surgical repair of stress urinary incontinence (SUI) and pelvic organ prolapse (POP); however, there is growing concern such meshes are associated with serious complications. This study compares the potential of two autologous cell sources for attachment and extra-cellular matrix (ECM) production on a biodegradable scaffold to develop tissue engineered repair material (TERM). Human oral fibroblasts (OF) and human adipose-derived stem cells (ADSC) were isolated and cultured on thermo-annealed poly-L-lactic acid (PLA) scaffolds for two weeks under either unrestrained conditions or restrained (either with or without intermittent stress) conditions. Samples were tested for cell metabolic activity (AlamarBlue® assay), contraction (serial photographs analyzed with image J software), total collagen production (Sirius red assay), and production of ECM components (immunostaining for collagen I, III, and elastin; and scanning electron microscopy) and biomechanical properties (BOSE tensiometer). Differences were statistically tested using two sample t-test. Both cells showed good attachment and proliferation on scaffolds. Unrestrained scaffolds with ADSC produced more total collagen and a denser homogenous ECM than OF under same conditions. Restrained conditions (both with and without intermittent stress) gave similar total collagen production, but improved elastin production for both cells, particularly OF. The addition of any cell onto scaffolds led to an increase in biomechanical properties of scaffolds compared to unseeded scaffolds. OF and ADSC both appear to be suitable cell types to combine with biodegradable scaffolds, in the development of a TERM for the treatment of SUI and POP. Neurourol. Urodynam. 33:531-537, 2014. © 2013 Wiley Periodicals, Inc.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.