Abstract

IntroductionSecondary use of electronic health record (EHR) data for research requires that the data are fit for use. Data quality (DQ) frameworks have traditionally focused on structural conformance and completeness of clinical data extracted from source systems. In this paper, we propose a framework for evaluating semantic DQ that will allow researchers to evaluate fitness for use prior to analyses.MethodsWe reviewed current DQ literature, as well as experience from recent multisite network studies, and identified gaps in the literature and current practice. Derived principles were used to construct the conceptual framework with attention to both analytic fitness and informatics practice.ResultsWe developed a systematic framework that guides researchers in assessing whether a data source is fit for use for their intended study or project. It combines tools for evaluating clinical context with DQ principles, as well as factoring in the characteristics of the data source, in order to develop semantic DQ checks.ConclusionsOur framework provides a systematic process for DQ development. Further work is needed to codify practices and metadata around both structural and semantic data quality.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.