Abstract

Cell replacement therapy is a promising treatment for irreversible retinal cell death in diverse diseases such as Stargardt's disease, age‐related macular degeneration, and retinitis pigmentosa. The final impact of all retinal dystrophies is the loss of photoreceptors; hence, there is a pressing need for research into replacement. Seminal work has shown that a simple three‐dimensional culture system enables differentiation of human pluripotent stem cells to retinal organoids containing large numbers of photoreceptors developing alongside retinal neurons and Müller glia cells in a laminated structure that resembles the native retina. Despite these promising developments, current protocols show different efficiencies across pluripotent stem cells and result in retinal organoids with a mixture of photoreceptor cells at varying maturation states, along with nonphotoreceptor cell types. In this study, we investigated the impact of stage‐specific addition of retinoic acid (RA), 9‐cis‐retinal, 11‐cis‐retinal, levodopa (l‐DOPA), triiodothyronine (T3), and γ‐secretase inhibitor ((2S)‐N‐[(3,5‐Difluorophenyl)acetyl]‐l‐alanyl‐2‐phenyl]glycine1,1‐dimethylethyl ester2L [DAPT]) in the generation of cone and rod photoreceptors. Our results indicate that addition of RA + T3 during days 90 to 120 of differentiation enhanced the generation of rod and S‐cone photoreceptor formation, while the combined addition of DAPT from days 28 to 42 with RA during days 30 to 120 of differentiation led to enhanced generation of L/M‐cones at the expense of rods. l‐DOPA when added together with RA during days 90 to 120 of differentiation also promoted the emergence of S‐cones at the expense of rod photoreceptors. Collectively, these data represent an advance in our ability to direct generation of rod and cone photoreceptors in vitro.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call