Abstract
To generate stable cell lines that express high levels of recombinant genes often requires screening of a large number of transfected cells using ELISA. The most widely used alternative to ELISA screening is to use an intracellularly expressed GFP reporter construct which allows sorting of recombinant gene expression cells based on GFP fluorescence intensity. The disadvantage of cell sorting, however, is that the resulting population will be polyclonal with the danger of instability and overgrowth of low producers. In addition, GFP or its variants can be toxic to host cells at high concentrations, and thus may reduce growth and robustness of high producer cells or even cause them to become apoptotic. We have developed a new mammalian expression system in which a recombinant protein and a fluorescence protein, AcGFP1, are expressed on the same plasmid separated by an internal ribosome entry site (IRES). A signal peptide was incorporated upstream of AcGFP1 so that the fluorescent protein is secreted from cells, preventing cellular toxicity from intracellular accumulation and enabling convenient and accurate measurement of the protein. Expression tests of Ebola viral envelope GP1 and HIV gp120 proteins using this expression system in 293-H cells showed recombinant protein expression levels were closely correlated with AcGFP1 yield. Therefore, AcGFP1 can serve as an accurate reporter for recombinant protein expression and measuring AcGFP1 concentration provides a convenient, product independent and universal way for efficient clone screening.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.