Abstract

Polymer compounds such as Natural Rubber (NR), which consists of compounds such as isoprene, are capable of being processed for the manufacture of a range of rubber based products for a large variety of applications. The properties of a natural rubber compound are susceptible to enhancements in their properties through the incorporation of nanofillers into its matrix. This study addresses the preparation of a natural rubber based nanocomposite that utilizes graphene as a nanofiller for the facilitation of the required enhancement in the rubber compounds properties. The nanocomposite specimens used in the study were prepared by means of acid-coagulation. The acid-coagulation formulation utilized was adapted from methodologies employed in commercial applications. The enhancement in the rubber properties due to the incorporation of the nanofiller was validated by means of mechanical testing. Prior to the testing, the applicable standard for tensile property testing was identified to be ASTM D412. Through the acclaimed standard, a mould to facilitate the preparation of the required specimens was 3D printed from PETG. The primary aim of the study was to determine the effect of large concentrations of graphene (beyond 2.5wt %).The results from the mechanical testing of the acid-coagulated samples exhibited enhancements in the elongation at break and tensile strength between unfilled NR and the graphene filled NR nanocomposite. With the incorporation of 5wt% of graphene, the elongation at break of the rubber increased to 687%, showing a 25% increase. The tensile strength of the rubber increased to 4.07 MPa, showing an enhancement of 102% in comparison to the pristine rubber compound. KEYWORDS: Natural Rubber, Graphene, Acid-Coagulation, Tensile strength, Elongation at break.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.