Abstract

The high variability of construction environments results in high construction-cost variation, especially in material costs. Inadequate planning may cause material shortages that delay the project schedule or, alternatively, a substantial increase in inventory costs by producing or supplying materials earlier than they are needed at the construction site. In order to solve these problems, this paper studies steel rebar production and supply operations and establishes an optimal model that minimizes the integrated inventory cost of the supply chain. Based on the optimal model, this paper develops a decision-support system to generate a production and supply plan for a supplier and buyers of steel rebar. After utilizing the decision-support system to create the supply and production plan, this paper analyzes the results to study the influence of transaction constraints on inventory cost. This paper also discusses cases of global optimization of the inventory cost for the entire supply chain and compares them with cases of local optimization for individual members.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.