Abstract

Individuals with paralyzed limbs due to spinal cord injuries lack the ability to perform the reaching motions necessary to every day life. Functional electrical stimulation (FES) is a promising technology for restoring reaching movements to these individuals by reanimating their paralyzed muscles. We have proposed using a quasi-static model-based control strategy to achieve reaching controlled by FES. This method uses a series of static positions to connect the starting wrist position to the goal. As a first step to implementing this controller, we have completed a simulated study using a MATLAB based dynamic model of the arm in order to determine the suitable parameters for the quasi-static controller. The selected distance between static positions in the path was 6 cm, and the amount of time between switching target positions was 1.3 s. The final controller can complete reaches of over 30 cm with a median accuracy of 6.8 cm.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.