Abstract

BackgroundThe use of federated networks can reduce the risk of disclosure for sensitive datasets by removing the requirement to physically transfer data. Federated networks support federated analytics, a type of privacy-enhancing technology, enabling trustworthy data analysis without the movement of source data. ObjectivesTo set out the methodology used by the International COVID-19 Data Alliance (ICODA) and its partners, the Secure Anonymised Information Linkage (SAIL) Databank and Aridhia Informatics in piloting a federated network infrastructure and consequently testing federated analytics using test data provided from an ICODA project, the International Perinatal Outcome in the Pandemic (iPOP) Study. To share the challenges and benefits of using a federated network infrastructure to enable trustworthy analysis of health-related data from multiple countries and sources. ResultsThis project successfully developed a federated network between the SAIL Databank and the ICODA Workbench and piloted the use of federated analysis using aggregate-level model outputs as test data from the iPOP Study, a one-year, multi-country COVID-19 research project. This integration is a first step in implementing the necessary technical, governance and user experiences for future research studies to build upon, including those using individual-level datasets from multiple data nodes. ConclusionsCreating federated networks requires extensive investment from a data governance, technology, training, resources, timing and funding perspective. For future initiatives, the establishment of a federated network should be built into medium to long term plans to provide researchers with a secure and robust data analysis platform to perform joint multi-site collaboration. Federated networks can unlock the enormous potential of national and international health datasets through enabling collaborative research that addresses critical public health challenges, whilst maintaining privacy and trustworthiness by preventing direct access to the source data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.