Abstract
Bacterial meningitis is one of the harmful and deadly infectious diseases, and any delay in its treatment will lead to death. In this paper, a prognostic model was developed to predict the risk of death amongst probable cases of bacterial meningitis. Our prognostic model was developed using a decision tree algorithm on the national meningitis registry of the Iranian Center for Disease and Prevention (ICDCP) containing 3,923 records of meningitis suspected cases in 2018-2019. The most important features have been selected for the model construction. This model can predict the mortality risk for the meningitis probable cases with 78% accuracy, 84% sensitivity, and 73% specificity. The identified variables in prognosis the death included age and CSF protein level. CSF protein level (mg/dl) <= 65 versus > 65 provided the first branch of our decision tree. The highest mortality risk (85.8%) was seen in the patients >65 CSF protein level with 30 years < of age. For the patients <=30 year of age with CSF protein level >137 (mg/dl), the mortality risk was 60%. The prognostic factors identified in the present study draw the attention of clinicians to provide early specific measures, such as the admission of patients with a higher risk of death to intensive care units (ICU). It could also provide a helpful risk score tool in decision-making in the early phases of admission in pandemics, decrease mortality rate and improve public health operations efficiently in infectious diseases.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.