Abstract
Process models in mineral processing can be classified based on the level of information required from the ore, i.e. the feed stream to the processing plant. Mineral processing models usually require information on total solid flow rate, mineralogical composition and particle size information. The most comprehensive level of mineral processing models is the particle-based one (liberation level), which gives particle-by-particle information on their mineralogical composition, size, density, shape i.e. all necessary information on the processed material for simulating unit operations. In flowsheet simulation, the major benefit of a particle-based model over other models is that it can be directly linked to any other particle-based unit models in the process simulation. This study aims to develop a unit operation model for a wet low intensity magnetic separator on particle property level. The experimental data was gathered in a plant survey of the KA3 iron ore concentrator of Luossavaara-Kiirunavaara AB in Kiruna. Corresponding feed, concentrate and tailings streams of the primary magnetic separator were sampled, assayed and mass balanced on mineral liberation level. The mass-balanced data showed that the behavior of individual particles in the magnetic separation is depending on their size and composition. The developed model involves a size and composition dependent entrapment parameter and a separation function that depends on the magnetic volume of the particle and the nature of gangue mineral. The model is capable of forecasting the behavior of particles in magnetic separation with the necessary accuracy. This study highlights the benefits that particle-based models in simulation offer whereas lower level process models fail to provide.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.