Abstract

Sweat glands developed from the embryonic epidermis. To elucidate the underlying mechanisms of morphogenesis, a reliable in vitro test system for bioactive screening must be developed. Here, we described a novel and convenient model by coculturing embryonic tissue and epidermal stem cells (ESCs) using Transwell insert for evaluating the effects of soluble morphogens on sweat gland morphogenesis in vitro. Using this coculture system, morphological alteration, histological features, and specific markers were observed. Initial experiments revealed that ESCs cocultured with embryonic paw pad (EPP) tissue demonstrated glandular structure and cytokeratin 8 (K8) and cytokeratin 18 (K18) positive, while ESCs cocultured with embryonic dorsal skin demonstrated “sea snail” structure and K8, K18 negative. Moreover, bone morphogenetic protein 4 (BMP4) and epidermal growth factor (EGF) concentrations were detected in the medium of the EPP group. BMP receptor inhibitor could effectively block the ESC differentiation to sweat glands, while EGF receptor blocker did not show the effect. Our results showed clear benefits of this novel and convenient model in terms of in vitro-in vivo correlation. It was an appropriate alternative for screening of potential bioactives regulating the sweat gland morphogenesis mechanism.

Highlights

  • As external temperature is not lower than the body temperature, sweat vaporization becomes the main channel for heat radiation [1]

  • When embryonic paw pad (EPP) tissue was cultured in vitro, placode structure was formed at day 1, sweat gland bud was observed at day 2, and ductal structure was formed at day 3 (Figure 2(a))

  • All eccrine sweat gland cells are derived from epithelial stem cells or epithelial progenitor cells in mammals [1, 2]

Read more

Summary

Introduction

As external temperature is not lower than the body temperature, sweat vaporization becomes the main channel for heat radiation [1]. Sweat glands contribute to skin homeostasis and involved in wound healing of the human skin. This gland is not fully characterized as lacking the appropriate research models. Sweat glands are only located in some distinct regions of certain mammals [2]. In comparison with other skin appendages, essential morphogens and bioactives in the process of sweat gland development are far from clear. An in vitro test system of sweat gland development for further investigation is necessary

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call