Abstract
BackgroundThe objective of this study was to develop and validate a nomogram for predicting the risk of an acute complicated course in pediatric patients with Acute Hematogenous Osteomyelitis (AHO).MethodsA predictive model was developed based on a dataset of 82 pediatric AHO patients. Clinical data, imaging findings, and laboratory results were systematically collected for all patients. Subsequently, biomarker indices were calculated based on the laboratory results to facilitate a comprehensive evaluation. Univariate and multivariate logistic regression analyses were conducted to identify factors influencing early adverse outcomes in AHO. A nomogram model was constructed based on independent factors and validated internally through bootstrap methods. The discriminative ability, calibration, and clinical utility of the nomogram model were assessed using receiver operating characteristic (ROC) curves, calibration plots, and decision curve analysis (DCA), respectively. The developed nomogram model was compared with previously published A-score and Gouveia scoring systems.ResultsLogistic regression analysis identified delayed source control, suppurative arthritis, albumin on admission, and platelet to lymphocyte ratio (PLR) as independent predictors of early adverse outcomes in pediatric AHO patients. The logistic regression model was formulated as: Log(P) = 7. 667–1.752 × delayed source control − 1.956 × suppurative arthritis − 0.154 × albumin on admission + 0.009 × PLR. The nomogram’s AUC obtained through Bootstrap validation was 0.829 (95% CI: 0.740–0.918). Calibration plots showed good agreement between predictions and observations. Decision curve analysis demonstrated that the model achieved net benefits across all threshold probabilities. The predictive efficacy of our nomogram model for acute complicated course in pediatric AHO patients surpassed that of the A-score and Gouveia scores.ConclusionsA predictive model for the acute complicated course of pediatric AHO was established based on four variables: delayed source control, suppurative arthritis, albumin on admission, and PLR. This model is practical, easy to use for clinicians, and can aid in guiding clinical treatment decisions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.