Abstract

An experimental breakthrough curve for Salicylic acid in an adsorption recovery process was determined by an anion-exchange resin IRA-93. The volumetric mass transfer coefficients were calculated by employing constant wave propagation theory. Meanwhile, the effects of volumetric feed flow rates on this break through curve and mass transfer coefficients at different flow rates were also studied in order to develop three new models to predict mass transfer coefficient. The results demonstrated that by the increase in the feed flow rates, the amount of adsorption reduces. However, while the volumetric feed flow rates increase the overall volumetric mass transfer coefficients will increase. This grows the feeling that the feed flow rate should be optimized. The optimum flow rate for the adsorption was found to be 7 mg/l in this study. In addition, three new models to predict the mass transfer coefficient in respect of feed rates were developed in this research work which showed very high fittings with R2>0.99. These models could fully support the experimental data obtained.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call