Abstract

The most common surgical repair of abdominal wall hernia goes through implanting a mesh that substitutes the abdominal muscle/fascia while it is healing. To reduce the risk of relapse or possible complications, this mesh needs to mimic the mechanical behavior of the muscle/fascia, which nowadays is not fully determined. The aim of this work is to develop a methodology to characterize in vivo the passive mechanical behavior of the abdominal wall. For that, New Zealand rabbits were subjected to pneumoperitoneum tests, taking the inner pressure from 0mmHg to 12mmHg, values similar to those used in human laparoscopies. Animals treated were divided into two groups: healthy and herniated animals with a surgical mesh (polypropylene SurgiproTM Covidien) previously implanted. All experiments were recorded by a stereo rig composed of two synchronized cameras. During the postprocessing of the images, several points over the abdominal surface were tracked and their coordinates extracted for different levels of internal pressure. Starting from that, a three dimensional model of the abdominal wall was reconstructed. Pressure–displacement curves, radii of curvature and strain fields were also analysed. During the experiments, animals tissue mostly deformed during the first levels of pressure, showing the noticeable hyperelastic passive behavior of abdominal muscles. Comparison between healthy and herniated specimen displayed a strong stiffening for herniated animals in the zone where the high density mesh was situated. Cameras were able to discern this change, so this method can be used to measure the possible effect of other meshes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.