Abstract

The semi-empirical Kozeny–Carman (KC) equation is the most famous permeability–porosity relation, which is widely used in the field of flow in porous media and is the starting point for many other permeability models. However, this relation has many limitations from its inception, and the KC constant is an empirical parameter which was proved to be not a constant. In this paper, we briefly reviewed the KC equation, its modifications and various models for the KC constant. We then derived an analytical expression for the permeability in homogeneous porous media based on the fractal characters of porous media and capillary model. The proposed model is expressed as a function of fractal dimensions, porosity and maximum pore size. The analytical KC constant with no empirical constant is obtained from the assumption of square geometrical model. Furthermore, a distinct linear scaling law between the dimensionless permeability and porosity is found. It is also shown that our analytical permeability is more closely related to the microstructures (fractal dimensions, porosity and maximum pore size), compared to those obtained from conventional methods and models.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.