Abstract

Solar photovoltaic (PV) systems are one of the fastest growing renewable energy technologies and plenty of research has been and continues to be carried out in this domain. Maximization of solar PV power plant production, efficiency and return on investment can only be achieved by having adequate and effective maintenance systems in place. Of the various maintenance schemes, predictive maintenance is popular for its effectiveness and minimization of resource wastage. Maintenance activities are scheduled based on the real time condition of the system with priority being given to the system components with the highest likelihood of failure. A good predictive maintenance system is based on the premise of being able to anticipate faults before they occur. In this study therefore, a fault prediction tool for a solar plant in Uganda is proposed. The hybrid tool is developed using both feed forward and long short term memory neural networks for power prediction, in conjunction with a mean chart statistical process control tool for final fault prediction. Results from the study demonstrate that the feed forward and long short term memory neural network modules of the proposed tool attain mean absolute errors of 4.2% and 6.9% respectively for power production predictions. The fault prediction capability of the tool is tested under both normal and abnormal operating conditions. Results show that the tool satisfactorily discriminates against the fault and non-fault conditions thereby achieving successful solar PV system fault prediction.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call