Abstract

Near-infrared spectroscopy (NIRS) techniques can provide noninvasive in vivo hemoglobin oxygenation information but suffer from relatively low resolution in biological tissue imaging. Microwave-induced thermoacoustic tomography (TAT) can produce high-resolution images of the biological tissue anatomy but offer limited physiological information of samples because of the single species of the chromophore it maps. To overcome these drawbacks and take advantage of the merits of the two independent techniques, we built a dual-modality system by combining a NIRS system and a TAT system to image biological tissues. A series of phantom trials were carried out to demonstrate the performance of the new system. The spatial resolution is about 1mm, with a penetration depth of at least 17.5mm in the human subject. A cohort of five healthy subjects was recruited to conduct real-time forearm venous and arterial cuff occlusion experiments. Numerous results showed that this dual-modality system could measure oxygen metabolism and simultaneously provide anatomical structure changes of biological tissues. We also found that although the hemoglobin concentration varied consistently with many other published papers, the TAT signal intensity of veins showed an opposite variation tendency in the venous occlusion stage compared with other existing work. A detailed explanation is given to account for the discrepancy, thus, providing another possibility for the forearm experiments using TAT. Furthermore, based on the multiple types of information afforded by this dual-modality system, a pilot clinical application for the diagnosis of anemia is discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call