Abstract
The purpose of this study is to provide an efficient Multi-Objective Multidisciplinary Robust Design Optimization (MOMRDO) framework. To this end, Bi-Level Integrated System Synthesis (BLISS) framework is implemented as a fast Multi-disciplinary Design Optimization (MDO) framework. Progressive Latin Hypercube Sampling (PLHS) is developed as a Design of Experiment (DOE) of the Uncertainty Analysis (UA). This systematic approach leads to a fast, adaptive and efficient framework for Robust Design Optimization (RDO) of complex systems. The accuracy and performance of the proposed algorithm have been evaluated with various tests. Finally, the RDO of a hydrazine monopropellant thruster is defined as a case study. The results show that the proposed method is a fast and efficient method for the multi-objective optimization design of complex systems, and this approach can be used for other engineering applications as well.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.