Abstract

Remote sensing data are becoming increasingly important for quantifying long-term changes in land surfaces. Optical sensors onboard satellite platforms face a tradeoff between temporal and spatial resolutions. Spatiotemporal fusion models can produce high spatiotemporal data, while existing models are not designed to produce moderate-spatial-resolution data, like Moderate-Resolution Imaging Spectroradiometer (MODIS), which has moderate spatial detail and frequent temporal coverage. This limitation arises from the challenge of combining coarse- and fine-spatial-resolution data, due to their large spatial resolution gap. This study presents a novel model, named multi-scale convolutional neural network for spatiotemporal fusion (MSCSTF), to generate MODIS-like data by addressing the large spatial-scale gap in blending the Advanced Very-High-Resolution Radiometer (AVHRR) and Landsat images. To mitigate the considerable biases between AVHRR and Landsat with MODIS images, an image correction module is included into the model using deep supervision. The outcomes show that the modeled MODIS-like images are consistent with the observed ones in five tested areas, as evidenced by the root mean square errors (RMSE) of 0.030, 0.022, 0.075, 0.036, and 0.045, respectively. The model makes reasonable predictions on reconstructing retrospective MODIS-like data when evaluating against Landsat data. The proposed MSCSTF model outperforms six other comparative models in accuracy, with regional average RMSE values being lower by 0.005, 0.007, 0.073, 0.062, 0.070, and 0.060, respectively, compared to the counterparts in the other models. The developed method does not rely on MODIS images as input, and it has the potential to reconstruct MODIS-like data prior to 2000 for retrospective studies and applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.