Abstract

A walking worker assembly line (WWAL), in which each cross-trained worker travels along the line to carry out all required tasks, is an example of lean system, specifically designed to respond quickly and economically to the fluctuating nature of market demands. Because of the complexity of WWAL design problems, classical heuristic approaches are not capable of solving problematic design characteristic of WWAL of very large design space. This paper presents a new genetic approach to address the mixed model walking worker manual assembly line optimisation design problem with multiple objectives. The aim is to select a set of operational variables to perform to the required demand for two product models. The goal is to produce the required models at the lowest cost possible, whilst keeping within an ergonomically balanced operation. Genetic algorithms are developed to tackle this problem. This paper describes the fundamental structure of this approach, as well as the influence of the crossover probability, the mutation probability and the size of the population on the performance of the genetic algorithm. The paper also presents an application of a developed algorithm to the operational design problem of plastic electrical box assembly line.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.