Abstract

Soil erosion is commonly measured as the quantity of sediment leaving a plot or watershed. The techniques for measuring soil erosion patterns and sediment redistribution within plots or watersheds by direct monitoring are very limited. The objective of this study was to develop a direct and non-intrusive tracer method to study the sources, patterns and rates of erosion and deposition of sediments in erosion plots. The magnetic tracer developed in this study consisted of polystyrene plastic beads embedded with a magnetic powder (magnetite). The “magnetized” beads, with a mean weight diameter of 3.2 mm and particle density of about 1.2 g cm −3, were uniformly mixed with soil and tested in the laboratory using simulated rainfall and inflow studies to simulate the interrill and rill components of soil erosion, respectively. In the interrill and rill experiments, the tracer was transported in the same proportion it was initially mixed with the soil. Given this fact, a magnetometer, which measures the soil's magnetic susceptibility, could be used to identify areas of deposition or detachment. The magnetic susceptibility would be increased or reduced depending on whether deposition or detachment occurs. To simulate detachment and deposition, a magnetometer was tested for different tracer concentrations and different thickness of soil containing the tracer. The magnetometer promises to be a sensitive, accurate, and useful tool to study the spatial variation of soil erosion when magnetic tracers are used.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.