Abstract
Fast removal of soft phases (e.g., pearlite and ferrite) in the iron matrix limits the wear life of high-Cr white irons. To address this shortcoming, the authors successfully produced fine networks of M6C carbide in a high-Cr white iron through extensive thermodynamic calculations. Fishbone-like networks of M6C carbides were observed with an optical microscope. It was experimentally determined that such carbide networks protected the soft matrix and increased the overall hardness. Additionally, electron backscattered diffraction was conducted, which showed that the alloy contained phases of M7C3, M6C, ferrite, and retained austenite. Solidification sequence was determined by correlating the thermodynamic equilibrium calculation results with the size and distribution of each phase. A dry sand/rubber wheel apparatus following ASTM standard G65 Procedure A was utilized to assess the abrasive wear performance of the developed alloy. Results showed that the volume loss of the developed material was 25 pct less than that of conventional high-Cr white irons. Wear scars were investigated using a scanning electron microscope, and the improved wear resistance was attributed to the “buffer” effect and plastic deformation of the introduced M6C carbide networks.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.