Abstract

In this article, we present the design and implementation of a flexible manufacturing system (FMS) control platform based on a programmable logic controller (PLC) and a personal computer (PC)-based visual man-machine interface (MMI) and data acquisition (DAS) unit. The key aspect of an FMS is its flexibility to adapt to changes in a demanding process operation. The PLC provides feasible solutions to FMS applications, using PC-based MMI/DAS, whereby PLCs are optimized for executing rapid sequential control strategies. PCs running MMI/DAS front-ends make intuitive operation interfaces, full of powerful graphics and reporting tools. Information from the PC can be distributed through a company's local area network or web using client-server technologies. Currently, with the convergence of underlying microprocessor technology and software programming techniques, many users find that PLCs provide a cost-effective solution to real-time control in small- to medium-sized process plants, especially when combined with supervisory PCs using hybrid systems. The major work of this article demonstrates that PLCs are responsive to rapid and repetitious control tasks, using PCs that present the flow of information automation and accept operator instructions, thereby providing the user a tool to modify and monitor the process as the requirements change.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call