Abstract
To develop a next-generation anticancer metal-based drug, realize the multi-targeted combination therapy of protein drug and metal-based drug for cancer, solve their co-delivery challenges, and improve their in vivo targeting ability, we proposed to develop a multi-targeted anticancer metal-based agent exploiting the properties of the tumor microenvironment (TME) and of lactoferrin (LF). To this end, we optimized a series of gallium (Ga, III) isopropyl-2-pyridyl-ketone thiosemicarbazone compounds to obtain a Ga compound (C4) with remarkable cytotoxicity and then constructed a new LF-C4 nanoparticle (LF-C4 NP) delivery system. In vivo studies showed that LF-C4 NPs not only had a greater capacity for inhibiting tumor growth than LF or C4 alone but also solved the co-delivery problems of LF and C4 and improved their targeting ability. Furthermore, free C4 and LF-C4 NPs inhibited tumor growth through multiple synergistic actions on the TME: killing cancer cell, inhibiting tumor angiogenesis, and activating immune system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.