Abstract

Greenhouse gas emissions from the burning of fossil fuels are one of the main causes of anthropogenic climate change. Large-scale deployment of renewable energy can play an immense role in transforming the global energy system and mitigating the emissions. This paper describes the development of a novel framework called MArket Penetration ModeLing of Renewable Energy Technologies in Electric Power Sector (MAPLET-PS). MAPLET-PS assesses the impacts of policy measures such as carbon price and financial incentives on the adoption of renewable energy technologies. The framework was used to develop a case study for the electric power sector of Alberta, a fossil-dominated province in Western Canada. The results show that implementing a carbon price on fossil fuel electric power sources and incentives for renewable energy, along with the phase-out of coal-fired electricity generation, can mitigate 29% of Alberta's electricity sector 2020 GHG emissions by 2050 and reduce GHG emissions from 46.5 Mt of CO2 eq. in 2020 to 23.6 and 29.1 Mt of CO2 eq. per year in 2030 and 2050, respectively, in Alberta. Moreover, these changes can increase the share of renewable energies from 12.5% in 2018 to 30% in 2050. These rates can be achieved by implementing a carbon price along with a 1000 $ incentive per kW new capacity development and 70 $ incentive per MWh electric power generation from renewable sources, from 2021 to 2025, primarily from wind turbines.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call