Abstract

PurposeThis study aimed to explain how a framework could be developed for (1) the preliminary estimation of project safety level (PSL) in current projects, (2) the estimation of the maximum possible PSL using limited financial resources and (3) the estimation of the minimum financial resources required for reaching a specific PSL.Design/methodology/approachThe data of 95 steel structural building projects were collected via a questionnaire to evaluate the proposed framework for the Iranian construction industry. Based on unofficial local construction statistics and literature reviews, six safety influential factors (SIFs) were selected to which a cost could be assigned. The costs associated with various levels were also determined for each SIF through literature reviews and expert interviews. A multiple linear regression (MLR) model was developed as a predictive model to determine PSL for future projects based on the data of previous projects. Moreover, linear programming (LP) was applied to take modeling constraints and project conditions into account.FindingsThe results demonstrated the impacts of all the factors on PSL and the model's potential for the preliminary estimation of PSL using SIFs. The results also indicated that a higher PSL could be achieved by optimizing the allocation of financial resources to each SIF.Originality/valueThis study contributes to the existing body of knowledge by developing a step-by-step framework to identify an optimal safety cost allocation (OSCA) to achieve the maximum possible PSL using a limited safety budget and considering the data of similar projects. The main objective was to promote project safety, decrease construction site injuries and fatalities and help local construction industries exploit potential financial advantages.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.