Abstract
In the resources sector, artificial neural networks (ANNs) are becoming more and more well-liked. Using datasets of uranium occurrence as input data, ANN technology offers answers to problems. In this paper, a new artificial neural network (ANN) model and Triangulation Irregular Network (TIN) were used for forecasting of uranium occurrence in Gattar II (GII) area, Northeastern Desert, Egypt. The multilayer perceptron ANN model was trained with the Levenberg–Marquardt algorithm, for calculating the uranium (U) occurrence in GII area based on 185 datasets. TIN method showed a clear distribution for uranium ore grade, total gamma ray (total γ-ray) and thorium (Th) content at the studied area. The proposed ANN model achieves coefficient of determination (R2) of 0.993, root mean square error (RMSE) of 67.197%, mean relative error (MRE) of −2.66%, and mean absolute relative error (MARE) of 12.54%.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Journal of Radiation Research and Applied Sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.