Abstract

In this paper, a thermodynamically-consistent constitutive model recently proposed for nanocomposite shape memory polymers (SMPs) is used as a basis for development of SMP beam element in a nite element framework. The beam theory utilized here, is the Euler- Bernoulli beam theory with its basic assumptions. E ects of di erent material as well as the geometric structural parameters e.g., reinforcement (nano/micro-particles) volume fraction, viscosity coecients and external loads are studied on the thermoemchanical responseof the structure in this work. The beam element numerical results are compared to those of 3D nite element modeling, to verify the validity of the beam element formulation andthe assumptions made therein. This beam element provides us a fast and reliable tool in simulation of structures consist of reinforced SMP beams. As an application, the developed nanocomposite SMP beam element could be used for numerical modeling of thermechanical response of the drugs (e.g., theophylline) coated by lms of SMP nanocomposites. It is shown that the numerical results are in correspondence with those of experiments reported for sustained release of SMP-nanocomposite based drugs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.