Abstract
Dermatological photodynamic therapy (DPDT) involves using systematic photosensitizers in combination with light irradiation treatment to eliminate cancer cells. Therefore, a noninvasive fluorescence photodiagnosis system is critical in DPDT for diagnosing target tissues and demarcating the margin of normal tissues. This study proposes a 375-nm ring LED light module in fluorescence imaging for DPDT applications. Image reproducibility (I.R.) and image interference (I.I.) analysis were performed. The results showed that the I.R. value of this fluorescence diagnostic system was higher than 99.0%, and the I.I. from external light sources was lower than 3.0%. In addition, the result of an in vivo study showed that the Chlorin e6 red fluorescence and the scope of distribution of B16-F10 melanoma cells in a mouse ear’s vein could be measured clearly using our device; however, the comparison studio with 395-nm LED lights could not focus or capture the red fluorescence effectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.