Abstract

With the recent expansion in Self-Driving and Autonomy field, every vehicle is occupied with some kind or alter driver assist features in order to compensate driver comfort. Expansion further to fully Autonomy is extremely complicated since it requires planning safe paths in unstable and dynamic environments. Impression learning and other path learning techniques lack generalization and safety assurances. Selecting the model and avoiding obstacles are two difficult issues in the research of autonomous vehicles. Q-learning has evolved into a potent learning framework that can now acquire complicated strategies in high-dimensional contexts to the advent of deep feature representation. A deep Q-learning approach is proposed in this study by using experienced replay and contextual expertise to address these issues. A path planning strategy utilizing deep Q-learning on the network edge node is proposed to enhance the driving performance of autonomous vehicles in terms of energy consumption. When linked vehicles maintain the recommended speed, the suggested approach simulates the trajectory using a proportional-integral-derivative (PID) concept controller. Smooth trajectory and reduced jerk are ensured when employing the PID controller to monitor the terminals. The computational findings demonstrate that, in contrast to traditional techniques, the approach could investigate a path in an unknown situation with small iterations and a higher average payoff. It can also more quickly converge to an ideal strategic plan.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.