Abstract
مقدمه: پوکی استخوان بیماری رایجی در زنان است. شکستگیها آسیبهای جبران ناپذیری ایجاد میکنند. بنابراین، تشخیص زودهنگام این بیماری و شروع درمان قبل از رخ دادن شکستگی مسئله مهمی است. هدف مطالعه حاضر، ایجاد یک سیستم تصمیم یار بالینی مبتنی بر شبکه های عصبی مصنوعی با قابلیت تشخیص ابتلا به پوکی استخوان بود. روش کار: مطالعه حاضر از نوع توسعه ای بود که بصورت مقطعی در نیمه دوم سال ۱۳۹۶ انجام شد. در پژوهش حاضر، ابتدا با شناسایی متغیرهای تاثیرگذار، پرسش نامه نظرسنجی برای انتخاب مهمترین عوامل بالینی تهیه شد. اطلاعات ۲۵۶ نفر از زنان و تراکم استخوان پنج سال بعد از ثبت اولیه مربوط به زنان مراجعه کننده به واحد سنجش تراکم استخوان دانشگاه علوم پزشکی بوشهر برای آموزش شبکه استفاده شد. برای یافتن بهترین شبکه از روش آزمون و خطا استفاده شد. همچنین، شبکه با الگوریتمهای گرادیان مزدوج و لونبرگ-مارکوارت آموزش داده شد. ارزیابی بر اساس ماتریس آشفتگی و معیارهای حساسیت، ویژگی و صحت انجام گرفت. یافتهها: در مرحله اول از ۱۵ ویژگی ضروری از نظر پزشکان، مصرف الکل، انحنای پشت و برداشتن رحم، حذف و ۱۲ متغیر انتخاب شدند. سپس، شبکه عصبی پرسپترون چندلایه طراحی شد. نتایج نشان داد که الگوریتم گرادیان مزدوج با ۱۰ نرون و الگوریتم لونبرگ-مارکوارت با ۱۲ نرون در لایه مخفی بهترین ساختار شبکه را دارند. علاوه بر آن ، مقایسه صحت نشان داد که در مجموع الگوریتم لونبرگ-مارکوارت نتایج بهتری داشت. بهترین نتیجه به دست آمده حساسیت، ویژگی و صحت به ترتیب ۱/۸۳، ۴/۸۹ و ۳/۸۶ بود. نتیجه گیری: در مطالعه حاضر، با تمرکز بر دادههای بومی ابزاری توسعه داده شد که میتواند در زمینه پیگیری بیماری پوکی استخوان بسیار موثر باشد. استفاده از این ابزار برای ارجاع به موقع افراد بیمار و شروع درمان میتواند از رخ دادن شکستگی عوارض جبران ناپذیر پوکی استخوان جلوگیری کند.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.