Abstract

Soft sensors are mathematical models that estimate the value of a process variable that is difficult or expensive to measure directly. They can be based on first principle models, data-based models, or a combination of both. These models are increasingly used in mineral processing to estimate and optimize important performance parameters such as mill load, mineral grades, and particle size. This study investigates the development of a data-driven soft sensor to predict the silicate content in iron ore reverse flotation concentrate, a crucial indicator of plant performance. The proposed soft sensor model employs a dataset obtained from Kaggle, which includes measurements of iron and silicate content in the feed to the plant, reagent dosages, weight and pH of pulp, as well as the amount of air and froth levels in the flotation units. To reduce the dimensionality of the dataset, Principal Component Analysis, an unsupervised machine learning method, was applied. The soft sensor model was developed using three machine learning algorithms, namely, Ridge Regression, Multi-Layer Perceptron, and Random Forest. The Random Forest model, created with non-reduced data, demonstrated superior performance, with an R-squared value of 96.5% and a mean absolute error of 0.089. The results suggest that the proposed soft sensor model can accurately predict the silicate content in the iron ore flotation concentrate using machine learning algorithms. Moreover, the study highlights the importance of selecting appropriate algorithms for soft sensor developments in mineral processing plants.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call