Abstract

Failure of metallic materials due to plastic and/or creep deformation occur by the emergence of necking, microvoids, and cracks at heterogeneities in the material microstructure. While many traditional deformation modeling approaches have difficulty capturing these emergent phenomena, the discrete element method (DEM) has proven effective for the simulation of materials whose properties and response vary over multiple spatial scales, e.g., bulk granular materials. The DEM framework inherently provides a mesoscale simulation approach that can be used to model macroscopic response of a microscopically diverse system. DEM naturally captures the heterogeneity and geometric frustration inherent to deformation processes. While DEM has recently been adapted successfully for modeling the fracture of brittle solids, to date it has not been used for simulating metal deformation. In this paper, we present our progress in reformulating DEM to model the key elastic and plastic deformation characteristics of FCC polycrystals to create an entirely new crystal plasticity modeling methodology well-suited for the incorporation of heterogeneities and simulation of emergent phenomena.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call