Abstract

Kluyveromyces marxianus is an emerging host for metabolic engineering. This thermotolerant yeast is the fastest growing eukaryote, has high flux through the TCA cycle, and can metabolize a broad range of C5, C6, and C12 carbon sources. In comparison to the common host Saccharomyces cerevisiae, this non-conventional yeast suffers from a lack of metabolic engineering tools to control gene expression over a wide transcriptional range. To address this issue, we designed a library of 25 native-derived promoters from K. marxanius CBS6556 that spans 87-fold transcriptional strength under glucose metabolism. Six promoters from the library were further characterized in both glucose and xylose as well as across various temperatures from 30 to 45 ​°C. The temperature study revealed that in most cases EGFP expression decreased with elevating temperature; however, two promoters, PSSA3 and PADH1, increased expression above 40 ​°C in both xylose and glucose. The six-promoter set was also validated in xylose for triacetic acid lactone (TAL) production. By controlling the expression level of heterologous 2-pyrone synthase (2-PS), the specific TAL titer increased over 8-fold at 37 ​°C. Cultures at 41 ​°C exhibited a similar TAL biosynthesis capability, while at 30 ​°C TAL levels were lower. Taken together, these results advance the metabolic engineering tool set in K. marxianus and further develop this new host for chemical biosynthesis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call