Abstract
Although bioproduction of Paclitaxel by endophytic fungi is highly considered as an alternative promising source, but its yield is usually very low in comparison with other taxoids. Different strategies i.e., chemical and physical elicitations have been developed in order to overcome the shortage of Paclitaxel production. Paclitaxel biosynthesis is started with terpenoid pathway followed by phenylpropanoid metabolism where a benzoylphenylisoserine moiety is attached to C13 of baccatin III skeleton. This point which is catalyzed by the function of PAM seems to be a bottleneck that limits the rate of Paclitaxel production. Whether phenylpropanoids pathway regulates the taxanes biosynthesis in Cryptosporiopsis tarraconensis endophytic fungus elicited with benzoic acid (BA) was hypothesized in the present paper. The involvement of certain signal molecules and key enzymes of terpenoid and phenylpropanoid metabolism were investigated. According to the results, application of BA promoted a signaling pathway which was started with increase of H2O2 and ABA and continued by increase of NO and MJ, and finally resulted in increase of both phenylpropanoids and taxanes. However, again the rate of Paclitaxel production was lower than other taxoids, and the latter was much lower than phenolics. Therefore, supplying benzoic acid provided the precursor for the common taxan ring production. It is unlikely that Paclitaxel production is merely controlled by side chain production stage. It is more likely that in C. tarraconensis endophytic fungus, similar to Taxus sp., the competition between phenylpropanoid and taxoid pathways for substrate ended in favor of the former. The interaction network which was constructed based on DSPC algorithm confirmed that most compounds with close proximity have shared metabolic pathway relationships. Therefore, it is unlikely that the feeding with a given precursor directly result in increase of a desired metabolite which is composed of different merits.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.