Abstract
AbstractApproximating 3D shapes with piecewise developable surfaces is an active research topic, driven by the benefits of developable geometry in fabrication. Piecewise developable surfaces are characterized by having a Gauss image that is a 1D object – a collection of curves on the Gauss sphere. We present a method for developable approximation that makes use of this classic definition from differential geometry. Our algorithm is an iterative process that alternates between thinning the Gauss image of the surface and deforming the surface itself to make its normals comply with the Gauss image. The simple, local‐global structure of our algorithm makes it easy to implement and optimize. We validate our method on developable shapes with added noise and demonstrate its effectiveness on a variety of non‐developable inputs. Compared to the state of the art, our method is more general, tessellation independent, and preserves the input mesh connectivity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.